Growth and texturing of rare earth nitride thin films

Q2.3 MRS

26 November 2007

Andrew Preston (andrew.preston@gmail.com)
Growth and texturing of REN thin films

Victoria University of Wellington

- Ben Ruck
- Jianping Zhong
- Claire Meyer (Q10.6)
- Joe Trodahl

Canterbury University (PLD)

- Steve Durbin
- Ian Farrell
Rare earth nitrides

- Across the RE series you get very…
 - similar chemical properties (5d and 6s electrons)
 - different magnetic properties (unfilled 4f shell)
- All have simple cubic rock salt (NaCl) structure
- React with water in atmosphere
 - Need to passivate with capping layer
Growth and texturing of REN thin films

Rare earth nitrides

• Interesting questions
 – Electronic structure calculations are challenging
 • localized 4f electrons are tough to deal with
 • Many different predictions
 • Metallic, half-metallic and semi-conducting states predicted
 – Magnetic ordering
 • SmN magnetism
 – Small magnetic moment, magnetic ordering
 – see Claire Meyer Q10.6

• Very clear need for experimental results
Growth and texturing of REN thin films

Growth methods

• MBE
• RE(NH$_2$)$_2$ -> REN
• Reactive Ion-Beam sputtering
 – Leuenberger et al, PRB 72, 014427 (2005)
• Thermal evaporation (VUW)
 – Granville et al, PRB 73, 235335 (2006)
Growth and texturing of REN thin films

Thermal evaporation

- UHV
- Partial pressure of N_2 gas
 - $P_{N_2} \sim 10^{-4}\text{mbar}$
- This works!
- GaN or MgF$_2$ capping layer
Characterization

- SmN, GdN, DyN, ErN, LuN
- Good 1:1 stoichiometry ± 2% (RBS)
- Low O content, uniform films (SIMS)
- Semiconducting (transport)
Growth and texturing of REN thin films

Characterization - XRD

- Typical REN
- Randomly oriented nanocrystals (~10nm)

![XRD spectrum image]
Growth and texturing of REN thin films

Characterization - XRD

GdN (!) SmN
Characterization

- Clear magnetic transitions (GdN: 70K)
- Coercive field ~ 250 Oe

Granville et al, “Semiconducting ground state of GdN thin films”
Characterization

• Semiconducting behaviour
 – smaller gap in ferromagnetic ground state

Granville et al, “Semiconducting ground state of GdN thin films”
Pulsed Laser Deposition (PLD)

• Laser ablation of RE metal source
• Similar to thermal evaporation techniques except that evaporation rate is time dependent (depends on pulse frequency)
• Main advantages
 – Can grow at elevated temperature
 – Novel capping materials possible
 – RHEED for *in situ* characterization
PLD - GdN

- Have grown thin films of GdN
- At elevated temperatures: ~700°C
- Substrates: Si, Sapphire, YSZ
- Capping layer: YSZ
Characterization - RHEED

• RHEED taken along 2 different directions
 – Match RHEED of substrates (in-plane epitaxy)
Growth and texturing of REN thin films

Characterization - XRD

(200) (400)

YSZ (substrate)

GdN
Characterization - Magnetic

• Magnetization saturates at very small field strengths
• Coercive field ~ 20 Oe
 – Order of magnitude smaller than thermal samples
Many parameters to explore

- Rare earths
- Substrates
 - Si
 - YSZ (lattice matched, but oxygen is a worry)
 - Sapphire
- Growth temperature
- Growth pressure
- Activated N_2
- Capping layers
Summary

• Both theory and measurements of nanocrystalline films indicate interesting properties
• Further advances require quality epitaxial films before they can be answered
• This has been achieved as a proof of concept
• Much more work to do
Thank You

Claire Meyer (Q10.6)
Magnetic properties of REN thin films
Appendix
Growth and texturing of REN thin films

Extra Info - N$_2$ Pressure

\[\sigma (S \text{ cm}^{-1}) \]

\[P_{N2} (10^{-5} \text{ mbar}) \]
Growth and texturing of REN thin films

Extra Info - PLD XRD
Extra Info – Substrates

- Sapphire: 41.8
- Si: 28.6
- YSZ: 34.8, 73.8
Extra Info – RBS
Extra Info – N_2 content

GdN11: variable N_2 pressure

Conductance [Ω$^{-1}$]

Pressure [10$^{-6}$ mbar]

Time [s]

semiconducting metallic
Extra Info – SIMS profile

- N_2 GdN (GaN cap)